Rhythmic bursting in the cortico-subthalamo-pallidal network during spontaneous genetically determined spike and wave discharges.

نویسندگان

  • Jeanne Tamar Paz
  • Jean-Michel Deniau
  • Stéphane Charpier
چکیده

Absence seizures are characterized by impairment of consciousness associated with bilaterally synchronous spike-and-wave discharges (SWDs) in the electroencephalogram (EEG), which reflect paroxysmal oscillations in thalamocortical networks. Although recent studies suggest that the subthalamic nucleus (STN) provides an endogenous control system that influences the occurrence of absence seizures, the mechanisms of propagation of cortical epileptic discharges in the STN have never been explored. The present study provides the first description of the electrophysiological activity in the cortico-subthalamo-pallidal network during absence seizures in the genetic absence epilepsy rats from Strasbourg, a well established model of absence epilepsy. In corticosubthalamic neurons, the SWDs were associated with repetitive suprathreshold depolarizations correlated with EEG spikes. These cortical paroxysms were reflected in the STN by synchronized, rhythmic, high-frequency bursts of action potentials. Intracellular recordings revealed that the intraburst pattern in STN neurons was sculpted by an early depolarizing synaptic potential, followed by a short hyperpolarization and a rebound of excitation. The rhythmic hyperpolarizations in STN neurons during SWDs likely originate from a subpopulation of pallidal neurons exhibiting rhythmic bursting temporally correlated with the EEG spikes. The repetitive discharges in STN neurons accompanying absence seizures might convey powerful excitation to basal ganglia output nuclei and, consequently, may participate in the control of thalamocortical SWDs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges.

This study reports the first intracellular recordings obtained during spontaneous, genetically determined spike and wave discharges (SWDs) in nucleus reticularis thalami (NRT) neurons from the genetic absence epilepsy rats from Strasbourg (GAERS), a model that closely reproduces the typical features of childhood absence seizures. A SWD started with a large hyperpolarization, which was independe...

متن کامل

Spatiotemporal dynamics of optogenetically induced and spontaneous seizure transitions in primary generalized epilepsy.

Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger absence seizures. Most previous studies have been purely correlational, and it remains unc...

متن کامل

Seizure Transitions in Primary Generalized Epilepsy

14 Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. 15 Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that 16 rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger 17 absence seizures. Most previous studies have been purely correlational, and it...

متن کامل

Cellular and network mechanisms of genetically-determined absence seizures.

The absence epilepsies are characterized by recurrent episodes of loss of consciousness associated with generalized spike-and-wave discharges, with an abrupt onset and offset, in the thalamocortical system. In the absence of detailed neurophysiological studies in humans, many of the concepts regarding the pathophysiological basis of absence seizures are based on studies in animal models. Each o...

متن کامل

Spike-wave discharges in WAG/Rij rats are preceded by delta and theta precursor activity in cortex and thalamus.

OBJECTIVE In order to unravel the mechanisms underlying the "sudden" onset of spontaneous absences in genetically prone subjects, we investigated the immediate precursors of spike-wave discharges (SWDs) produced in cortico-thalamo-cortical neuronal networks. METHODS A time-frequency analysis of the cortical and thalamic ECoG of WAG/Rij rats was accomplished with a continuous wavelet decomposi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 8  شماره 

صفحات  -

تاریخ انتشار 2005